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Abstract

This paper explores the coefficient linking educational attainment of fathers to
that of their children. Standard estimation approaches ignore the left-censoring
that arises due to compulsory participation and which affects both generations.
This paper formalises the bias introduced by censoring and identifies conditions
under which simple estimators may still deliver consistent results. Biases depend
on the degree of censoring in both child and parental education as well as the
choice of instrument. Empirical results using British data follow the theoretical
expectations and reveal linear IV estimates to be substantially upward-biased. In
a further extension, we handle the non-normality of the non-censored part of the
education distribution using an ordered probit model. This preferred approach
delivers an average marginal effect which is smaller still. In addition to this sub-
stantive finding, our results also have general implications for the interpretation
of instrumental variable estimates and provide a potential explanation for results
varying according to choice of instrument that is distinct from the usual attribution
to impact heterogeneity.
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1 Introduction

Many situations arise in which econometricians analyse censored data. Censoring may

arise in two forms. In the first, and perhaps more widely considered case, it arises because

the reported data differ from the true outcome. For example data on age of completion

of education may not distinguish those who complete their education beyond the age of

say twenty-three from those who complete it at the age of twenty-three. In this case any

analysis which ignores censoring is complicated by what is in effect measurement error.

A second form of censoring arises because one group in the population may be subject

to different behavioural influences than another group in the population. For example,

in a country with a minimum school-leaving age children may stay at school to the

minimum age not because they want to but because they have to. It follows that any

analysis of the relationship between the education of parents and that of their children

should take account of the distortions which might arise from compulsion.

A substantial survey of work on the connection between parents’ and children’s ed-

ucation is provided by Holmlund, Lindahl & Plug (2011) following an earlier account

by Haveman & Wolfe (1995). They bring together a wide body of work, and discuss

at length the issue of identification; how to separate the effects of parents’ education

on that of their children from other familial influences. They discuss in particular two

means of doing this; first, as discussed by Dearden, Machin & Reed (1997) and more

fully by Plug (2004), it is possible to study the issue for adopted children. Twou, Liu &

Hammitt (2012) also follow this approach which is intended to ensure that the influence

of inherited genetic effects is removed. As Holmlund et al. (2011) point out this does,

however face the objection that adoption may itself be selective. A second route is to

study the children of (ideally identical) twin sisters. In this case the focus is on whether

differences in the educational attainment of the twins is connected with differences in the

educational attainment of their own children, with the aim of differencing out genetic

influences. Of course there remains the question whether the genetic material of the

children’s fathers is correlated with the educational attainment of their mothers.

Other work (Oreopoulos, Page & Stevens 2006) has looked at changes in the com-

pulsory education of parents on their children. This is obviously a topic of interest in

its own right given the importance of compulsory education in advanced economies. At

the same time it brings to the fore the question of how best to deal with the effects of

compulsion. Right-censoring of data on years of education can arise because the data

are collected before some of the respondents have competed their education. This was
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explored by de Haan & Plug (2011). Similar, and probably more important issues arise

with left-censoring as a result of compulsion.

This is a very material issue; one of the data sets widely used to explore the connection

between parents and children’s education in the United Kingdom, the British Cohort

Survey suggests, before any reweighting to correct for non-response, that 59% of the

parents and 45% of the children left school at the school-leaving age rather than obviously

at the time of their own choosing. An analytical framework which assumes that the age

of completion of education of a child is a linear function of that of its parents plus a

random term will mislead if in fact for some this is actually the result of compulsion.

Things are even more complicated if, as our data suggest, compulsory schooling is not

transmitted across generations in the same way as voluntary schooling. Rigobon &

Stoker (2009) point out that, in such circumstances the assumptions required for the IV

estimate to be interpretable as a local average treatment effect (Imbens & Angrist 1994)

do not hold.

Rigobon & Stoker (2009) discuss the biases which arise from censoring in both OLS

and instrumental variable regression (following Austin & Hoch (2004) who looked at

OLS regression) when the explanatory variable is censored. In the situation we face

both the explanatory variable and the dependent variable are censored. We show in

these circumstances that the use of instrumental variables can serve to reduce the biases

which arise from censoring, and discuss circumstances in which IV estimates, unlike

their OLS counterparts are likely to be reasonably robust. The outcome depends on the

nature of the instrument as well as the extent to which the dependent and endogenous

explanatory variables are censored.

We proceed as follows. We begin by setting out the effects of censoring on parameter

estimates when both explanatory and dependent variable are censored, identifying the

way in which biases can offset each other. We explore this further making the assumption

of normality. We then present our data drawn from the 1970 British Cohort Survey. This

shows the ages at which the fathers of the children studied in the 1970 survey completed

their education with similar data for their children. Information on the social class of

the child’s paternal grandfather provides a set of instruments whose use passes tests for

both under- and over-identification. Using the parameters of our model estimated under

the assumption of normality, we explore the biases likely to arise from IV estimation.

We show that IV methods tend to overstate the influence of parental age of completing

education on that of children and that the main source of the bias is likely to be the
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fact that a higher proportion of fathers than children completed their education at the

statutory minimum age. Our theoretical analysis points to a connection between the

choice of instrument and the estimated IV parameter which matches closely what is

observed with our data.

This analysis is, however, subject to the criticism that it assumes educational age is

normally distributed above the censoring point. Use of an ordered probit model allows

us to relax this assumption. The results from this point to an estimate that is slightly

smaller than that obtained under the assumption of normality, and far below what is

delivered by conventional IV estimates.

2 Instrumental Variable Estimation and Censoring

We denote byXi the observed years of education of father i and Yi the years of education

of his child. Z∗i defines the instrument used in estimation, in this case an indicator of the

social class of the child’s paternal grandfather. X∗

i and Y ∗i denote the latent variables

underlying the observed data. These latent variables are all measured relative to their

means.

If Yc is the compulsory school-leaving age, then

Yi = Y ∗i if Y ∗i ≥ Yc

Yi = Yc if Y
∗

i < Yc

with a similar relationship holding for Xi and X
∗

i . We assume that the underlying rela-

tionship we want to estimate is between the latent variables

Y ∗i = γX
∗

i + ε
Y
i ; εYi are iid

Our interest is in the IV estimator; this tells us how far the influence of Z∗i on X∗

i is

transmitted to Y ∗i .

In the absence of censoring the IV estimate would be

γ∗IV =
Cov(Z∗Y ∗)

Cov(Z∗X∗)

while in the presence of censoring

γIV =
Cov(Z∗Y )

Cov(Z∗X)

Following Rigobon & Stoker (2009) we write

Y ∗i = Yi + Y
o
i
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where Y oi = 0 if Y
∗

i > Yc and Y
∗

i − Yc otherwise. Similarly

X∗

i = Xi +X
o
i

with Xo
i = 0 if X∗

i > Xc and X
∗

i −Xc otherwise. Then

γ∗IV =
Cov(Z∗Y ) + Cov(Z∗Y o)

Cov(Z∗X) + Cov(Z∗Xo)

and

γIV = γ∗IV
Cov(Z∗Y )

Cov(Z∗X)

Cov(Z∗X) + Cov(Z∗Xo)

Cov(Z∗Y ) + Cov(Z∗Y o)

= γ∗IV
1 + Cov(Z∗Xo)

Cov(Z∗X)

1 + Cov(Z∗Y o)
Cov(Z∗Y )

Whether censoring leads to attenuation or expansion of the coefficient depends then on

the relative magnitudes of Cov(Z
∗Xo)

Cov(Z∗X)
and Cov(Z∗Y o)

Cov(Z∗Y )
. To explore this further we develop a

simple structural model.

X∗

i = δZ
∗

i + ε
X
i (1)

Y ∗i = γX
∗

i + ε
Y
i (2)

Z∗i = ε
Z
i (3)

E




εXi
εYi
εZi



 = 0, Cov




εXi
εYi
εZi



 =




σ2X σXY 0
σXY σ2Y 0
0 0 σ2Z



 (4)

with the standard identifying assumption σY Z = 0 imposed. It is also assumed that δ

represents the whole of the interrelationship between X∗

i and Z∗i so that σXZ = 0

A key point to note is that impacts here are homogeneous. This means that any

differences in estimates cannot be attributed to impact heterogeneity across complier

groups. Rather they arise because the censoring generates biases which vary with the

degree of censoring and also, as we subsequently show, with the threshold converting a

latent instrumental variable into an (observed) dummy instrumental variable.

If we now consider the reduced form of the model, substituting out X∗

i we can write

X∗

i = δε
Z
i + ε

X
i (5)

Y ∗i = γ
(
δεZi + ε

X
i

)
+ εYi (6)

Z∗i = ε
Z
i (7)
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so that

V =Cov




X∗

i

Y ∗i
Z∗i



 =




σ2X + δ

2σ2Z γ
(
σ2X + δ

2σ2Z
)
+ σXY δσ2Z

γ
(
σ2X + δ

2σ2Z
)
+ σXY σ2Y + γ

2
(
σ2X + δ

2σ2Z
)
+ 2γσXY γδσ2Z

δσ2Z γδσ2Z σ2Z





(8)

We now establish sufficient conditions for the biases to cancel out. We normalise the

variables, setting sx =
√
σ2X + δ

2σ2Z and sy =
√
σ2Y + γ

2
(
σ2X + δ

2σ2Z
)
+ 2γσXY so that

x∗i =
X∗

i

sx
, y∗i =

Y ∗i
sy

and z∗i =
Z∗i
σZ .

. Suppose that x∗i and y∗i are drawn from the same

probability distribution, f(). Thus

f(x∗i ) = f(y
∗

i ). (9)

Such a situation of course, arises if the vector [εXi , ε
Y
i , ε

Z
i ] is normally distributed, since

then all linear combinations of it with zero mean will also be normally distributed about

zero. If they have the same censor point after correcting for scale, so that xc = Xc/sx =

yc = Yc/sy then it follows immediately that Cov(Z
∗Xo)

Cov(Z∗X)
= Cov(Z∗Y o)

Cov(Z∗Y )
so that the estimator is

unbiased. In our example such a situation might arise if the same proportions of fathers

and children stay at school until the minimum school-leaving age, provided of course that

the underlying distribution functions are also the same. More practically, with similar

cut points and similar distributions the bias is unlikely to be large. We now explore

the bias arising when the variables are normally distributed noting that non-parametric

methods (Chernozhukov, Fernandez-Val & Kowalski 2015) have not yet evolved to the

point where they can address the effects of censoring when both a dependent and an

endogenous explanatory variable are censored.

3 The Bias when Variables are Normally Distrib-

uted

We first assume that the specification is as above so the instrument is a continuous

variable. In appendix A we show that, if γIV is the IV estimator calculated from the

censored data and γ∗IV is the IV estimator calculated from the uncensored data, then

γIV = γ
∗

IV

Φ(−yc)

Φ(−xc)
(10)

giving us a measure of the bias. Of course the term Φ(−yc)/Φ(−xc) is simply the ratio

of the proportions of Y and X which are uncensored observations. Hence, in the normal

case IV estimates can be adjusted to correct for censoring bias.
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We now turn to the case where the instrument is a dummy variable, with the under-

lying latent variable unobserved. This is more relevant to the question we face, because

the indicator of social class is a discrete, not a continuous variable. Suppose that

Zi = 0 if Z∗i ≤ Zc (11)

Zi = 1 if Z∗i > Zc (12)

The model then becomes

X∗

i = δZi + ε
X
i (13)

Y ∗i = γX
∗

i + ε
Y
i (14)

Z∗i = ε
Z
i (15)

E




εXi
εYi
εZi



 = 0, Cov




εXi
εYi
εZi



 =




σ2X σXY 0
σXY σ2Y 0
0 0 σ2Z



 (16)

We show in Appendix A that, when the underlying disturbances driving the latent

variables are normal, with zc the normalised value of Zc and ρxz = δ/sx the correlation

between the normalised values x∗i and z
∗

i in the reduced form

Cov(xz) = φ(xc)Φ

(
ρxzxc − zc√
1− ρ2xz

)

+ ρxzφ(zc)Φ

(
ρxzzc − xc√
1− ρ2xz

)

(17)

+xcΦ(xc,−zc,−ρxz)− Φ(−zc) {Φ(xc)xc + φ(xc)}

Cov(yz) is again evaluated by substitution. The IV estimator is

γDIV =
Cov(yz)

Cov(xz)
.

The analysis of section 2 remains valid, but the condition for the bias to cancel out has

to reflect the change of instrument and becomes Cov(ZXo)
Cov(ZX)

= Cov(ZY o)
Cov(ZY )

.

The results in Appendix A identify two cases where γDIV is an unbiased estimator of

γ∗IV . First, and not surprisingly, if the xi and yi are uncensored, so that xc = yc = −∞,

then

Cov(xz) = ρxzφ(zc) and Cov(yz) = ρyzφ(zc)

and γDIV = γ
∗

IV . Secondly, if the censor/cut points are all zero, then

Cov(xz) = ρxzφ(0)/2 and Cov(yz) = ρyzφ(0)/2
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so that γDIV = γ
∗

IV . Beyond this it is necessary to calculate γDIV in order to establish how

large the biases are when the censor/cut points are different from zero. A particular

case of interest arises when the two censor points are the same while the cut point, Zc,

varies. Rather than explore this for a wide range of possible parameters, we now present

our data set. We can then estimate the model, both by IV and on the assumption of

normality. This allows us to explore the implications of the model parameters for the

biases that are generated in the IV estimators,

4 Empirical results

4.1 Data

The data we use are taken from the British Cohort Study. They present father-child

pairs giving the age at which each completed their full-time education. They also show

the occupation of the child’s paternal grandfather at the time when the child’s father

left school. This occupational status is used to provide an indicator of grandparental

social class, with six categories being identified. Professional and managerial workers

are classified to social class 1, while social class V covers elementary occupations. Social

class III is split between non-manual (III NM) and manual (III M) workers with the

former regarded as having higher social status than the latter.

Table 1 shows the cross tabulation of fathers’ age of completing education against

the grandfathers’ social class. The table consolidates those fathers who completed their

education at the age of twenty-three or older into a single category. This is done purely

for convenience; the data we use are not top-coded. Table 2 shows the analogous data

for the children; since these data were observed when the children were aged twenty-six,

there is an element of top-censoring, but its impact is unlikely to be large; only 0.2% of

the sample were still receiving education at the age of twenty-six. Some of the fathers

completed their education before the school-leaving age was increased to fifteen in April

1947 in Great Britain but ten years later in Northern Ireland. We exclude those father-

child pairs whose fathers were born in 1932 or earlier in Great Britain or who were born

in 1942 or from Northern Ireland, as well as those whose fathers were born abroad. This

exclusion results in 6036 observations being dropped out an initial 17196 children. On

top of this there is considerable attrition, giving us a final sample of 3868 father-child

pairs.

The data are unweighted. It is, however, possible to relate the probability of dropping

8



Age at which Father Grandfather’s Class
completed Education I II III NM III M IV V All
15 11.1% 37.5% 36.3% 66.7% 71.1% 81.6% 59.3%
16 10.3% 17.7% 26.2% 16.3% 14.6% 10.5% 16.5%
17 14.5% 11.5% 12.2% 5.3% 5.8% 2.4% 7.1%
18 21.4% 9.8% 9.1% 4.1% 4.0% 2.7% 5.9%
19 1.7% 1.7% 1.5% 1.2% 0.3% 0.7% 1.1%
20 4.3% 1.2% 1.2% 0.5% 0.0% 0.3% 0.7%
21 10.3% 5.6% 5.2% 2.5% 1.1% 0.7% 3.1%
22 5.1% 4.8% 3.7% 1.2% 1.4% 1.0% 2.2%
23+ 21.4% 10.1% 4.6% 2.2% 1.7% 0.0% 4.1%
Number 117 661 328 1818 650 294 3868

Table 1: Father’s Age of Completing Education and Grandfather’s Social Class (column
percentages)

Age at which Child Grandfather’s Class
completed Education I II III NM III M IV V Total
16 10.3% 28.5% 35.1% 49.2% 52.5% 58.5% 44.6%
17 10.3% 13.1% 12.5% 13.0% 12.9% 12.2% 12.8%
18 11.1% 16.0% 13.4% 13.5% 15.2% 16.0% 14.3%
19 9.4% 4.7% 4.0% 3.2% 3.4% 2.7% 3.7%
20 2.6% 2.7% 1.8% 1.8% 1.8% 0.0% 1.8%
21 13.7% 7.8% 7.3% 6.0% 4.2% 3.4% 6.1%
22 18.8% 12.7% 12.8% 5.0% 4.3% 2.0% 7.1%
23+ 23.9% 14.4% 13.1% 8.3% 5.7% 5.1% 9.5%
Number 117 655 328 1824 650 294 3868

Table 2: Child’s Age of Completing Education and Grandfather’s Social Class (column
percentages)
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Probit Coeff. (s.e.)
Father married 0.532***

(0.110)
Social Class I 0.661***

(0.078)
Social Class II 0.661***

(0.067)
Social Class III NM 0.601***

(0.066)
Social Class III M 0.392***

(0.059)
Social Class IV 0.227***

(0.065)
Constant -1.280***

(0.119)
N 10,494
Log-likelihood -6,795.2

Table 3: Determinants of the Probability of an Initial Respondent remaining in our
Sample

out of the survey to characteristics reported in the original 1970 survey, at least for the

vast majority of respondents. We report in table 3 a probit equation used to explain

the probability of dropping out. We find that the probability of a child remaining in

our sample is increasing in the social status of the father and is higher if the parents

were married than if they were not. After excluding observations of fathers who could

leave school at fourteen, these data are available for 10494 respondents out of the total

initial sample of 17196 children. While some covariates are available for all the children,

we judge that the benefits of using reasonably powerful covariates to account for non-

response outweighs the costs of losing those children for whom the covariates are not

available. We use the probit equation to provide weights with which we correct our

sample for the effects of attrition. The subsequent calculations are carried out using

weighted data.

4.2 IV Estimates

The first stage in assessing the importance of bias is to examine IV estimates. As is

clear from section 4.1, we can observe six categories of social class. This gives rise to

five independent dummy variables which can be used as instruments, while the simple

model set out above has only one dummy variable. At the same time, because the

dummy variables are ordered, it is possible to consolidate them in order to carry out
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Five Social Grandfather’s Social Class
Class Dummies I �II �IIINM �IIIM �IV

γIVD 0.844*** 0.786*** 0.807*** 0.858*** 1.000*** 1.034***
(0.058) (0.096) (0.067) (0.064) (0.106) (0.140)

Constant 4.323*** 5.255*** 4.918*** 4.086*** 1.811 1.261
(0.924) (1.551) (1.082) (1.031) (1.697) (2.254)

N 3868 3868 3868 3868 3868 3868
Kleinbergen-Paap 310 58.9 190 256.6 159.8 107.2
Sargan χ24=4.35
Percentage Dummy=1 2.6% 18% 26% 74.3% 91.7%

Table 4: IV Coefficient Estimates as Functions of the Cut Point for the Dummy Instru-
mental Variable

five possible IV regressions, in each of which the instrument is a single dichotomous

dummy. This allows us to explore the effect of moving the cut point for the dummy,

Zc, on the resulting estimate of γDIV . Equation (17) suggests that that should influence

the regression coefficient. A further benefit of the presence of five independent dummies

is that it is possible to carry out Sargan’s (1958) test for over-identification and thus

provide a degree of reassurance that the restriction σY Z = 0 is acceptable and hence

that the statistical analysis is valid.

In table 4 the results of these IV regressions are shown. The first column shows the

estimates when all five social class dummies are used as instruments. The subsequent five

columns show the estimates produced by dummies indicating social class of at least the

value indicated.1 The table also shows the proportion of respondents in each category,

and the cut point calculated on the assumption that the latent variable underlying social

class is normally distributed.

The results with five dummies suggest that the Sargan test is easily met, while

the Kleinbergen-Paap statistic does not point to any concerns that the instruments are

weak; in statistical terms the instruments seem valid. The IV estimates also show a

clear tendency for the coefficient to rise with the cut point. The question we now wish

to address is whether this is a natural feature of the interaction between the cut point

of the instrument and the censored nature of the data on age of completing education.

In other words, does this relationship between the IV coefficient and the definition of

the instrument reflect the bias arising from censoring?

1Following convention, we refer to social class I being higher than social class II. It indicates higher
status even if a lower class number.
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4.3 Estimates Corrected for Censoring

The first step in examining this is to estimate the counterparts to the models of table

4 using the structure of equations (1)-(4), but in a way which corrects for the effects of

censoring. Once again, it is possible to do it for five different definitions of the instrument.

The five single instrument models can be estimated using the cmp command in STATA

despite the fact that only the dummies are observed, given the assumption that the

underlying variables are normally distributed. We can also set up a model in which

all five categories of social class are used to delineate the latent variable assumed to

underlie social class. The five single instrument models provide a valuable comparison

with table 4 while the model which exploits the information on all categories of social

class offers the most obvious set of parameters with which to explore how closely the

empirical findings of table 4 match the theoretical implications conditional on normality.

The empirical analogue to the model set out by equations 1-4 is specified as follows:-

X∗

i = µX + δZ
∗

i + ε
X
i (18)

Y ∗i = µy + γX
∗

i + ε
Y
i (19)

Z∗i = εZi (20)

where the observed values, Xi and Yi are defined as in section 2.

The continuous variable underlying social class is not observed, but we define a

sequence of cut points

Z∗i ≤ Z
C
1 if Zi = 1, Z

C
n < Z

∗

i ≤ Z
C
n+1 if Zi = n+ 1 and Z

∗

i > Z
C
5 if Zi = 6

By analogy with the earlier models, we can estimate the system using an ordered probit

model for equation (20) or we can specify it with a dichotomous variable defined with

reference to a single cut point. The parameters are identified by setting the variance of

εZi is set to 1 and the covariances σXZ and σY Z to zero. The results of this are shown

in table 5. It can be seen that the parameter γ is much more stable across the different

specifications than in table 4; it is falling slightly, rather than rising in the cut point.

It should be noted that a closely related specification is provided by replacing equa-

tion (19) by

Y ∗i = µy + γXi + ε
Y
i (21)

Here it is the actual age at which the father completes his education, rather than his

latent age of completion, which influences the age of completion of the child. The two
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Grandfather’s Class
I II III NM III M IV V

Child’s Age of Completion
Constant 8.344*** 6.995*** 7.940*** 8.307*** 8.515*** 9.021***

(0.583) (0.950) (0.674) (0.604) (0.954) (1.233)
γ 0.604*** 0.706*** 0.635*** 0.608*** 0.592*** 0.554***

(0.041) (0.069) (0.048) (0.043) (0.070) (0.091)

Father’s Age of Completion
Constant 13.340*** 13.310*** 13.318*** 13.301*** 13.324*** 13.321***

(0.110) (0.112) (0.112) (0.112) (0.111) (0.111)
δ -1.835*** -2.289*** -2.052*** -2.195*** -1.437*** -1.528***

(0.093) (0.156) (0.117) (0.110) (0.121) (0.168)

Cut Points
Cut 1 -1.964*** -1.945***

(0.040) (0.040)
Cut 2 -0.916*** -0.914***

(0.023) (0.023)
Cut 3 -0.640*** -0.644***

(0.022) (0.021)
Cut 4 0.656*** 0.654***

(0.022) (0.023)
Cut 5 1.374*** 1.385***

(0.030) (0.031)

Variance-covariance
log σX 1.447*** 1.403*** 1.431*** 1.417*** 1.487*** 1.481***

(0.024) (0.029) (0.025) (0.025) (0.024) (0.026)
log σY 1.327*** 1.357*** 1.334*** 1.328*** 1.321*** 1.313***

(0.020) (0.031) (0.022) (0.021) (0.024) (0.024)
tanh−1σXY /(σXσY ) -0.228*** -0.383*** -0.272*** -0.244*** -0.200* -0.151

(0.049) (0.093) (0.060) (0.054) (0.088) (0.119)

N 3868 3868 3868 3868 3868 3868
Log-Lik. -14934 -10758.6 -11820.6 -12106.9 -12216.8 -11322.4
Log-Lik. (eq 21) -14996 -10788 -11873 -12164.6 -12245.2 -11338.5

Table 5: Parameter Estimates allowing for Censoring when Child’s Age of Completion
is influenced by Father’s Latent Age of Completion
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models have the same number of parameters, so it is reasonable to discriminate between

them on the basis of the log likelihoods associated with them. The log-likelihoods of

this second group of models are shown in the final row of table 5. These log-likelihoods

suggest strongly that the latent variable model of equation (19) should be preferred to

the actual variable model of equation (21).

The estimation of equations (18) to (20) provides us with the parameters of the sys-

tem described by equations (1) to (4) of section 3; it is natural to choose the parameters

found with multiple cut points for the social class variable, since these are the estima-

tors which make most use of the available information. With the parameters of the first

column of table 5 and the underlying assumption of joint normality, we can calculate

the values of the IV estimator which the theoretical analysis of section 3 suggests should

be found with a dichotomous dummy instrument.

The model parameters imply the following values for the elements of the covari-

ance matrix of the uncensored data. V, defined by equation (8), and its normalised

equivalent, Σ

V =




21.44 9.24 −1.84
9.24 17.55 −1.11
−1.84 −1.11 1



 ; Σ =




1 0.48 −0.40
0.48 1 −0.26
−0.40 −0.26 1





Using standard notation to refer to the elements of Vand Σ,

γ∗IV =
V2,3

V1,3
=
Σ2,3

Σ1,3

√
V2,2

V1,1
= 0.60

In order to explore the biases arising from censoring we work from matrix Σ, so as to

exploit the analysis of section 3. We then multiply the results by
√
V2,2/V1,1 in order

to express them in terms of a relationship between ages of completion of education of

fathers and children.

With the scaled and wieghted data xc = 0.36 and yc = −0.10 corresponding to

proportions of fathers and children completing their education at the statutory minimum

age of 64% and 47% respectively. Equation (10) implies that, if the latent instrument

were observed, it would deliver an estimate of the parameter, γlIV = 0.89 in contrast

to the true parameter of 0.60. In table 6 we show the cut points for the latent variable

underlying the five dichotomous instruments of table 4 together with the estimates of

the IV parameter, γDIV , which would be generated by using these dummies, with no

correction for the effects of censoring. These are compared with the estimates from

table 4. Finally we show in the table the estimates of the parameters which would be

14



Grandfather’s Social Class
I �II �IIINM �IIIM �IV

Instrument Cut Point (table 5) -1.964 -0.916 -0.640 0.657 1.374
Theoretical γDIV 0.751 0.826 0.850 0.988 1.078
Estimate (table 4) 0.790 0.810 0.860 1.000 1.030
γDIV if xc = yc = 0 0.558 0.577 0.584 0.629 0.662

Table 6: Parameter Estimates generated by a Censored Normal Distribution

generated if xc = yc = 0, i.e. if half of the fathers and children had completed their

education at the statutory minimum age. This sheds further light on the effects of

censoring and its interaction with the cut point of the instrument.

This table shows the connection between the choice of instrument (i.e. with Zc) and

the estimated parameter value. The theoretical model shows this ranging from 0.75 to

1.08 and the empirical estimates match the theoretical values closely. The theoretical

results found when the two censor points are set to zero suggests that the bias arises

primarily from the difference in the proportions of fathers and children completing their

education at the minimum age, rather than the interaction of this with the instrument.

Further simulations with other values of the censor point confirm this, at least given the

assumption of normality.

The close match between the estimates of table 4 and the theoretical results might

be taken to suggest that, in this particular case, the assumption of normality is not too

far from the mark. It is, however, possible to investigate this further, and we do that in

the next section, using an ordered probit model.

4.4 Allowing for Non-normality using an Ordered Probit Model

The analysis so far has made two important assumptions. First, it has been assumed

that the relationship between father’s education and child’s education is linear. The

British education system identifies a number of important thresholds, with school ex-

ams typically taken at ages sixteen and eighteen, followed, for those who proceeded to

university, by graduation from university three years later. If attaining these thresholds

is valuable and the benefits can be inherited, then one would expect the relationship be-

tween father’s and child’s age of completing education to be non-linear. Secondly, it was

assumed that the latent ages of completion were, along with the latent variable repre-

senting grandparental social class, jointly normally distributed. While, as noted earlier,

some progress has been made with non-parametric methods requiring much weaker as-

sumptions, these techniques do not make it possible to estimate the model we have here,
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in which a censored variable is explained by another endogenous censored variable.

An alternative means of estimating the latent variable model, with weaker distrib-

utional assumptions, is to treat the ages of completion of education of the fathers and

children as the cut points in a multivariate ordered probit model. With this model, the

cut points on the latent education variables are free to vary and can represent an arbi-

trary distribution. This avoids the assumption of normality of outcomes. Normality of

latent variables is of course required but the flexibility of the cut points means that that

is not restrictive. Grandfather’s social class is the third equation in the model; also of

ordered probit form. With this instrument, the model captures the causal relationship

between father’s and child’s latent education.

The model also addresses two other, more minor, features of our data. First, the

data themselves are interval censored, reporting ages of completion in complete years2.

Secondly, as we noted earlier, the data for child’s age of completion are top-censored at

twenty-six because they were collected when the children were aged twenty-six. As we

argued earlier, there is no reason to believe that this top-censoring has, despite de Haan

(2011), a material effect on the coefficients; it nevertheless does no harm to remove it.

The model in terms of latent variables is that of equations (1)- (3) but the latent

variables themselves have changed.

X∗

i = δZ∗ + εXi (22)

Y ∗i = ζX∗

i + ε
Y
i

Z∗i = εZi (23)

with 


εXi
εYi
εzi



 ˜N



0,




1 σXY 0
σXY 1 0
0 0 1







 (24)

so that the latent variables all have zero mean. The parameter relating father’s and

child’s latent variables is referred to as ζ to distinguish it from the parameter γ which

related ages of completing education. As before, we impose the identifying restrictions,

σXZ = 0 and σY Z = 0.

2This is in fact a more complicated issue than simple interval censoring. People tend to complete
their education at fixed points such as the end of an academic year. Their precise age on completion
thus depends partly on the date in the year at which they were born.
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We define cut points XC
1 to XC

16, Y
C
1 to Y C10 and ZC1 to ZC5

X∗

i ≤ XC
1 if Xi = 15, X

C
n < X

∗

i ≤ X
C
n+1 if Xi = 15 + n with 1 ≤ n ≤ 13

XC
14 < X∗

i ≤ X
C
15 if Xi = 29;X

C
15 < X

∗

i ≤ X
C
16 if Xi = 32; X

∗

i > X
C
16 if Xi ≥ 33

Y ∗i ≤ Y C1 if Yi = 16, Y
C
n < Y

∗

i ≤ Y
C
n+1 if Yi = 16 + n and Y ∗i > Y

C
10 if Yi ≥ 26

Z∗i ≤ ZC1 if Zi = 1, Z
C
n < Z

∗

i ≤ Z
C
n+1 if Zi = n+ 1 and Z

∗

i > Z
C
5 if Zi = 6

It should be noted that there are no observations with Xi = 30 or 31. The parameters

of the model can then be estimated using the multivariate ordered probit procedure in

cmp. The results are shown in table 7.

There are a number of issues raised by the table. First of all, the log-likelihood of

-14170 compares with that of -14934 for the censored linear model of table 5. There are

twenty-three more parameters in the ordered probit model, but even allowing for this,

the log-likelihood suggests that the ordered probit model should be strongly preferred to

the censored linear model.3 A counterpart of this is that the cut points shown in table

7 are very unevenly placed.

This in turn raises issues over the interpretation of the coefficient ζ. That shows

the extent to which the latent variable determining father’s age of completing education

influences the latent variable determining the age at which the child leaves education.

Unlike the situation with the earlier models, the latent variables do not directly represent

ages of completing education. With the ordered probit model, the expected marginal

increase in the child’s age of completion associated with a marginal increase in the

father’s age of completion depends on the latter. Furthermore we can evaluate this

only for ages beyond the father’s compulsory schooling because the specification does

not allow us to draw any implications about the relationship between latent ages of

completion below the limit set by the statutory minimum school leaving age.

For each observation we can, however, work out the marginal relationships between

the latent variables and use these to translate ζ into a relationship between ages of

completion of the father and the child. The non-linearity means that that will be specific

to each individual. Averaging across the population, however, provides an estimate of

the average marginal impact of father’s education on that of his child.

We denote by T xi the expected age of completion of the father conditional on the

latent variable for social class of z∗i , and T
y
i the expected age of completion of the child

3The AIC and BIC for the ordered probit model are 31,318.6 and 31,540.882 respectively. These are
both lower than for the model of table 5 (AIC and BIC of 33,212.2 and 33,288.411 respectively).
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Child’s age of completion Father’s age of completion Grandfather’s social class
ζ 0.654*** δ -0.438***

(0.040) (0.022)

Cut Points
16 0.368*** Class I -1.964***

(0.023) (0.040)
17 -0.082*** 17 0.877*** Class II -0.916***

(0.023) (0.024) (0.023)
18 0.279*** 18 1.154*** Class III NM -0.640***

(0.023) (0.027) (0.022)
19 0.727*** 19 1.449*** Class III M 0.657***

(0.026) (0.030) (0.022)
20 0.859*** 20 1.519*** Class IV 1.374***

(0.027) (0.031) (0.030)
21 0.932*** 21 1.563***

(0.028) (0.032)
22 1.177*** 22 1.798***

(0.031) (0.035)
23 1.535*** 23 2.021***

(0.038) (0.040)
24 1.901*** 24 2.250***

(0.046) (0.047)
25 2.299*** 25 2.457***

(0.059) (0.055)
26 3.085*** 26 2.774***

(0.126) (0.075)
27 3.030***

(0.099)
28 3.123***

(0.112)
29 3.194***

(0.122)
32 3.523***

(0.189)
33 3.691***

(0.244)
tanh−1σXY -0.212***

(0.049)
N 3,868
Log-likelihood -14,169.9

Table 7: The Parameters of the Ordered Probit Model
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conditional on z∗i . Write λxi = dT
x
i /dx

∗

i and λ
y
i = dT

y
i /dy

∗

i . Since dy∗i /dx
∗

i = ζ we can

then write

γi =
dT yi
dT xi

= ζ
λyi
λxi

We show in appendix B that, with τxk being the age of completion of education

associated with individuals whose latent variables lie between cut point k − 1 and cut

point k. Then conditional on a given value of the social class latent variable, z∗i

λxi (z
∗

i ) =
dT xi
dx∗i

= −

∑N−1
k=2 (φ(Xk − δz

∗

i )− φ(Xk−1 − δz
∗

i ))τ
x
k − φ(X1 − δz

∗

i )τ
x
2 − φ(XN−1 − δz

∗

i )τ
x
N−1

{Φ(XN−1 − δz∗i )− Φ(X1 − δz
∗

i )}

In applying this formula we set the upper cut point to that for age 29 (so thatτx2 = 16

and τxN−1 = 28) because the next cut point is at age 32. This has negligible effect

because the proportion of fathers reporting completing their education after age 29 is

minimal.

For children this complication is not present; with τy2 = 17 and τ yN−1 = 25 we have

λyi (z
∗

i ) =
dT yi
dy∗i

= −

∑N−1
k=2 (φ(

Yk−δζz
∗

i

σy
)− φ(

Yk−1−δζz
∗

i

σy
))τ yk − φ(

Y1−δζz
∗

i

σy
)τ y2 − φ(

YN−1−δζz
∗

i

σy
)τ yN−1{

Φ(
YN−1−δζz

∗

i

σy
)− Φ(

Y1−δζz
∗

i

σy
)
}

Both λxi and λ
y
i and thus ζi are functions of z

∗

i which is of course unobserved. We may,

however, calculate their expected values conditional on social class nzi being observed.

We evaluate

γnz
i
= ζ

∫ Znz
i

Znz
i
−1

{λy (z∗i ) /λ
x
i (z

∗

i )}φ (z
∗

i ) dz
∗

i

Φ
(
Znzi
)
− Φ(Znzi−1)

as the expected marginal impact conditional on a grandfather from social class nzi . The

average marginal effect is then given as

γOP =
∑

i

wiγnzi /
∑

i

wi (25)

where nzi is the social class of observation i.

We can evaluate γOP either for the whole sample or, perhaps more appropriately,

only for the restricted sample of 1,166 observations for which both the father and the

child have completed their education when older than the minimum school-leaving age.

We show in table 8 estimates of γOP for these two populations and also for father/child

pairs as a function of the social class of the grandfather.

The nonlinearities imply that the marginal transmission of educational advantage is

greater for those with grandfathers from the high social classes than from the low social
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Whole Restricted Grandfather’s Class
Sample Sample I II III NM III M IV V

γOP 0.54 0.56 0.68 0.59 0.55 0.53 0.49 0.50

Table 8: Estimates of the Average Marginal Impact of an Extension of Father’s Educa-
tion on that of Children

classes. The average marginal value for the restricted sample of 0.56 can be compared

with the value of 0.60 found using the censored linear model (table 5) and 0.84 estimated

by IV (table 4).

5 Conclusions

We have shown here, in a very practical example, the sort of distortions which can arise

when parameter estimates are produced by instrumental variables using data that are

censored. In our application — an investigation of the relationship between fathers’ and

children’s ages of completing their education — the fact that more than half of the fathers

and nearly half of the children left school at the compulsory school leaving age generates

a substantial bias upward bias in the estimate of the magnitude of the relationship.

Making the assumptions that the underlying variables are normally distributed, and

that the structural relationship is between the unobserved latent ages of completion of

education, we are able quantify the biases.

We find strong evidence to support the belief that the relationship is indeed between

the latent variables, rather than influenced by the actual experience of the fathers. The

instrument available to us, grandparental social class, is hexachotomous, allowing us to

identify five different dichotomous dummy variables. We find a close match between the

IV parameter estimates using these dummy variables and the values predicted by our

theoretical analysis on the assumption of normality. All of these values show an upward

bias compared to the underlying parameter estimate. The estimate produced using all

five dummy variables as instruments suggests that a child’s age of completing education

rises by 0.84 years for each extra year that their father underwent full-time education,

while methods which correct for the effects of censoring point to a coefficient of only

0.60. Use of a multivariate ordered probit model allows us to relax the assumption of

normally distributed education and points to an average marginal impact of father’s age

of completion on that of his child of only 0.56 years. This suggests that the bias arising

from the use of IV estimates with censored data is much greater than the bias arising

from the assumption of normality.
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Our results cast doubt on the idea that the intergenerational transmission of educa-

tional advantage is as powerful as is suggested by conventional linear models. Method-

ologically, they highlight the need to pay adequate regard to the issue of censoring.

Furthermore, they caution against attributing variation in IV results to impact hetero-

geneity across instrument-specific complier populations. In the common case of dummy

instruments, such variation can, when data are censored, equally be due to the choice

of threshold according to which latent instrumental variables are dichotomised; this can

itself be seen as an extreme form of censoring.

References

Austin, P. & Hoch, J. (2004), ‘Estimating Linear Regression Models in the Presence of

a Censored Independent Variable’, Statistics in Medicine 23, 411—429.

Chernozhukov, V., Fernandez-Val, I. & Kowalski, A. (2015), ‘Quantile Regression with

Censoring and Endogeneity’, Journal of Econometrics 186, 201—221.

de Haan, M. (2011), ‘The Effect of Parents’ Schooling on Child’s Schooling: A Nonpara-

metric Bounds Analysis’, Journal of Labor Economics 29, 859—892.

de Haan, M. & Plug, E. (2011), ‘Estimating Intergenerational Schooling Mobility on

Censored Samples: Consequences and Remedies’, Journal of Applied Econometrics

26, 151—166.

Dearden, L., Machin, S. & Reed, H. (1997), ‘Intergenerational Mobility in Britain’,

Economic Journal 107, 47—66.

Haveman, R. & Wolfe, B. (1995), ‘The Determinants of Children’s Attainments: a

Review of Methods and Findings’, Journal of Economic Literature 33, 1829—1878.

Holmlund, H., Lindahl, M. & Plug, E. (2011), ‘The Causal Effects of Parents’ School-

ing on Children’s Schooling: A Comparison of Estimation Methods’, Journal of

Economic Literature 49, 615—651.

Imbens, J. & Angrist, J. (1994), ‘Identification and estimation of local average treatment

effects’, Econometrica 62, 467—475.

Muthen, B. (1990), ‘Moments of the Censored and Truncated Normal Distribution’,

British Journal of Mathematical and Statistical Psychology 43.

21



Oreopoulos, P., Page, M. & Stevens, A. (2006), ‘The Intergenerational Effects of Com-

pulsory Schooling’, Journal of Labor Economics 24, 729—760.

Plug, E. (2004), ‘Estimating the Effect of Mother’s Schooling on Children’s Schooling

using a Sample of Adoptees’, American Economic Review 94, 358—368.

Rigobon, R. & Stoker, T. (2009), ‘Bias from Censored Regressors’, Journal of Business

and Economic Statistics pp. 340—353.

Rosenbaum, S. (1961), ‘Moments of a Truncated Bivariate Normal Distribution’, Journal

of the Royal Statistical Society, Series B 23, 223—229.

Twou, M.-W., Liu, J.-T. & Hammitt, J. (2012), ‘The Intergenerational Transmission of

Education: Evidence from Taiwanese Adoptions’, Economics Letters 115, 134—136.

A A Statistical Analysis of Censoring with Bivariate

Normality

The model we set out here a reduced form of three jointly normally distributed variables.

Two of the variables, X∗

i and Y
∗

i are assumed to be censored, so that the observed values

Xi and Yi are defined as

Xi = X
∗

i if X∗

i > XC while Xi = XC if X∗

i < XC and

Yi = Y
∗

i if Y ∗i > YC while Yi = YC if Y ∗i < YC

The identifying conditions of section 2 are assumed to be met.




X∗

i

Y ∗i
Z∗i



 ∼ N








µX
µY
µZ



 ,




σ2X ρxyσXσY ρxzσXσZ

ρxyσXσY σ2Y ρyzσY σZ
ρxzσXσZ ρyzσY σZ σ2Z







 .

We examine two cases. In the first Z∗i is observed, while in the second case Z∗i is

not observed. Instead we observe a dummy variable, Zi with Zi = 0 if Z∗i < Zc + µZ

and Zi = 1 if Z
∗

i > Zc + µZ. Since the instrumental variable estimator of the regression

coefficient is the ratio of two covariances, we evaluate the effect of censoring on the

estimate of the correlation, rxz calculated from observations on normalised censored

data. The first step is to normalise the variables. We set

x∗i =
X∗

i − µX
σX

; xi =
Xi − µX
σX

and xc =
Xc − µX
σX

.
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with similar definitions of y∗i , yi, yc, z
∗

i , zi and zc,

We use φ() and Φ() to represent the density function and cumulative distribution of

the standard normal distribution respectively. One argument indicates that the function

relates to the univariate normal distribution, while three arguments (the two ordinates

and the correlation) are used to indicate the bivariate normal distribution. The subse-

quent analysis draws heavily on the results quoted by Rosenbaum (1961) and Muthen

(1990) for the moments of truncated and censored bivariate normal distributions.

A.1 The Biasing Effect of Compulsion when the Instrument is

Fully Observed

We consider separately the cases depending on whether the x∗i > xc or not.

There are two cases where parents are educated beyond the compulsory age. In the

first their children are also educated beyond the compulsory age, while in the second,

they are educated only up to the compulsory age. The probabilities of these are given

as

1. xi > xc with P (xi > xc) = Φ(−xc)

2. xi=xc with P (xi > xc) = Φ(xc)

The product moment needs to be evaluated in two components, one for each of the

two cases above

1. xi > xc (Rosenbaum 1961)4

m1
xz = (ρxzΦ(−xc) + ρxzxcφ(xc))/Φ(−xc)

2. xi = xc

m2
xz = −xcρxzφ(xc)/Φ(xc)

Since the first moment of z∗i = 0, rxz =Cov(xz
∗) estimated from the censored data is

rxz = Φ(−xc)m
1
xz +Φ(xc)m

2
xz = ρxzΦ(−xc)

Similarly,

ryz = ρyzΦ(−yc)

4Rosenbaum (1961) uses the function Q(x) to refer to the probability mass of the normal distribution
in the range [x, ∞] rather than the range [-∞ ,x].
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and the IV estimator from the censored data is therefore

γIV =
ρyzΦ(−yc)σY

ρxzΦ(−xc)σX

in contrast to the estimator from the uncensored data

γ∗IV =
ρyzσY

ρxzσX

so that

γIV = γ
∗

IV

Φ(−yc)

Φ(−xc)

A.2 The Biasing Effect with a Dummy Instrument

When we observe zi rather than z
∗

i the covariance is the expected value of xi conditional

on zi = 1. The expected value of the second moment around zero is given as Muthen

(1990)

φ(xc)Φ

(
ρxzxc − zc√
1− ρ2xz

)

+ ρxzφ(zc)Φ

(
ρxzzc − xc√
1− ρ2xz

)

+ xcΦ(xc,−zc,−ρxz)

and the product of the two means is given as

Φ(−zc) {Φ(xc)xc + φ(xc)}

so the estimate of the covariance is

σ̂xz = φ(xc)Φ

(
ρxzxc − zc√
1− ρ2xz

)

+ ρxzφ(zc)Φ

(
ρxzzc − xc√
1− ρ2xz

)

+xcΦ(xc,−zc,−ρxz)− Φ(−zc) {Φ(xc)xc + φ(xc)}

Similarly

σ̂yz = φ(yc)Φ

(
ρyzyc − zc√
1− ρ2yz

)

+ ρyzφ(zc)Φ

(
ρyzzc − yc√
1− ρ2yz

)

+ycΦ(yc,−zc,−ρyz)− Φ(−zc) {Φ(yc)yc + φ(yc)}

so the parameter estimated from the censored data using a dummy variable as instrument

is

γDIV =
σ̂yz
σ̂xz

σY
σX

showing a clear bias, if one which is less straightforwardly represented than with the

linear instrument.
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It should be noted that, in the absence of censoring (xc = −∞), then

σ̂xz = ρxzφ(zc)

while if xc = zc = 0

σ̂xz =
(1 + ρxz)φ(0)− φ(0)

2
= ρxz

φ(0)

2

It follows that if xc = yc = zc = 0 then γ
D
IV is unbiased.

B Interpretation of the Ordered Probit Model

A general model explores the relationship between the years of education of fathers

and children using the parametric structure of an ordered probit model. Since the

ordered values for years of education are simply cut points, no assumption is made

about the distribution of years of education. We assume that educational attainment

is represented by latent variables, Y ∗i and X∗

i for the respondent and the respondent’s

father respectively. These latent variables are explained by the following system of

equations

X∗

i = δZ∗i + ε
x
i

Y ∗i = ζX∗

i + ε
y
i

Z∗i = εzi



εxi
εyi
εzi



 ˜N (0,Σ) with Σ =




1 ρxy ρxz
ρxy 1 0
ρxz 0 1





Actual age of completion of education is observed as N ordinal variables, We denote a

sequence of age thresholds, X1..XN−1 with X0 = −∞ and XN = ∞ as the thresholds

for the father, with the corresponding thresholds for the child being Y0...YN . Z0...ZN are

the thresholds which locate values of Z∗i to observed social classes. These are estimated

together with the parameters of the equations above, again using the STATA routine

cmp.

Here considerable care is needed over the interpretation of ζ. It shows the marginal

impact of the father’s latent variable on that of the child; since neither latent variable

represents age of completion of education it is not directly interpretable in terms of the

influence of the father’s age of completion on that of the child. If the thresholds are

evenly spaced there is a simple linear relationship between the latent variable and the

age of completing education. That is, however, unlikely to be the case; the point of
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estimating an ordered probit model is to allow for the possibility of non-linearity. In

turn that implies that the relationship between father’s age of completion and child’s

age of completion will be non-linear. For each observation we can, however work out

the marginal relationships between the latent variable and the age of completion of

education. These can then be used to translate ζ into a relationship between ages of

completion of the father and the child. The non-linearity means that that will be specific

to each individual. Averaging across the population, however, provides an estimate of

the average marginal impact of father’s age of completion on child’s age of completion.

We denote by T xi the expected age of completion of the father conditional on the

latent variable for social class of Z∗i , and T
y
i the expected age of completion of the child

conditional on z∗i . With λxi = dT
x
i /dx

∗

i and λ
y
i = dT

y
i /dy

∗

i . Since dy∗i /dx
∗

i = ζ we can

then write

γi =
dT yi
dT xi

= ζ
λyi
λxi

With wi the weight attached to observation i

γOP =
∑

i

wiγi/
∑

wi

provides our estimate of the average marginal relationship between age of completing

education of the father and that of the child.

We proceed using Φ() to represent the cumulative normal distribution and φ to

represent the density function of the normal distribution. Given z∗i and conditional on

the age at which father i completed his education being within the range X1..XN−1 his

expected age of completion is, with τxk the age of completion associated with threshold

Xk

T xi =

∑N−1
k=2 (Φ(Xk − δZ

∗

i )− Φ(Xk−1 − δZ
∗

i ))τ
x
k

Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )

We are interested in the effect that a small increase, h in δZ∗i has on T xi . We can,

however, only evaluate this for the population for which both X1 < δZ
∗

i < XN−1 and

X1 < δZ∗i + h < XN−1 since it is only for this population that we can evaluate the

expected age of completion both before and after a disturbance, h. This means that the

derivative of T xi will not provide what we need; we have to evaluate two terms, T
x
∗

i for

the expected age of completion of education for someone with a latent variable of δZ∗i ,

and T x∗∗i for someone with a latent variable δZ∗i + h.

First,

T x∗i =

∑N−1
k=2 (Φ(Xk − δZ

∗

i )− Φ(Xk−1 − δZ
∗

i ))τ
x
k +

{
Φ(XN−1 − δZ

∗

i − h)− Φ(XN−1 − δZ
∗

i ))τ
x
N−1

}

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )}+ {Φ(XN−1 − δZ
∗

i − h)− Φ(XN−1 − δZ
∗

i )}
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Here the second term in the numerator is an adjustment to recognise that the upper

limit of integration has to beXN−1−h so that after the increment of h the latent variable

remains within the permitted range; a similar adjustment to the denominator is needed.

For T x∗∗i the ranges are shifted by h. The upper limit is, however, XN−1.

T x∗∗i =

∑N−1
k=2 (Φ(Xk − δZ

∗

i − h)− Φ(Xk−1 − δZ
∗

i − h))τ
x
k − {Φ(X1 − δZ

∗

i )− Φ(X1 − δZ
∗

i − h))τ
x
2}

{Φ(XN−1 − δZ∗i − h)− Φ(X1 − δZ
∗

i − h)} − {Φ(X1 − δZ
∗

i )− Φ(X1 − δZ
∗

i − h)}

Applying Taylor’s theorem to each expression, we have

T x∗i =

∑N−1
k=2 (Φ(Xk − δZ

∗

i )− Φ(Xk−1 − δZ
∗

i ))τ
x
k − hφ(XN−1 − δZ

∗

i )τ
x
N−1

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )} − hφ(XN−1 − δZ
∗

i )

and

T x∗∗i =

∑N−1
k=2 (Φ(Xk − δZ

∗

i )− Φ(Xk−1 − δZ
∗

i ))τ
x
k − h

∑N−1
k=2 (φ(Xk − δZ

∗

i )− φ(Xk−1 − δZ
∗

i ))τ
x
k

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )} − hφ(X1 − δZ
∗

i )

−
hφ(X1 − δZ

∗

i )τ
x
2

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )} − hφ(XN−1 − δZ
∗

i )

Using Taylor’s theorem further

T x∗i = T xi − h
φ(XN−1 − δZ

∗

i )τ
x
N−1

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )}
+ h

T xi φ(XN−1 − δZ
∗

i )

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )}
2

and

T x∗∗i = T xi − h

∑N−1
k=2 (φ(Xk − δZ

∗

i )− φ(Xk−1 − δZ
∗

i ))τ
x
k − φ(X1 − δZ

∗

i )τ
x
2

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )}

−h
T xi φ(XN−1 − δZ

∗

i )

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )}
2

Taking the difference between T ∗∗i and T ∗i and letting h tend to zero

λxi =
dT xi
dx∗i

= −

∑N−1
k=2 (φ(Xk − δZ

∗

i )− φ(Xk−1 − δZ
∗

i ))τ
x
k − φ(X1 − δZ

∗

i )τ
x
2 − φ(XN−1 − δZ

∗

i )τ
x
N−1

{Φ(XN−1 − δZ∗i )− Φ(X1 − δZ
∗

i )}

Here the first term shows the effect of shunting some of the probability range across the

thresholds. The second term corrects for the fact that the people who cross the upper

threshold, XN−1 are excluded from the analysis, and the third term adjusts for the fact

that the range is those observations lying between X1 and XN−1 both before and after

the increment.

To perform a similar calculation for children, we substitute out the fathers’ latent

variable, so that

Y ∗i = δζZ
∗

i + ζε
x
i + ε

y
i
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We need to take account of the fact that, while x∗i is distributed with unit variance, the

variance of y∗i conditional on Z
∗

i is σ2y = 1 + ζ
2 + 2ρxyζ. This implies that

λyi =
dT yi
dy∗i

= −

∑N−1
k=2 (φ(

Yk−δζZ
∗

i

σy
)− φ(

Yk−1−δζZ
∗

i

σy
))τyk − φ(

Y1−δζZ
∗

i

σy
)τ y2 − φ(

YN−1−δζZ
∗

i

σy
)τ yN−1{

Φ(
YN−1−δζZ

∗

i

σy
)− Φ(

Y1−δζZ
∗

i

σy
)
}

allowing γi and thus γOP to be evaluated.

Both λxi and λyi and thus γi are functions of Z∗i which is of course unobserved.

We may, however, calculate their expected values conditional on social class nZi being

observed. We evaluate

γnZi = ζ

∫ Zn
Zn−1

{λy (Z∗) /λxi (Z
∗)}φ (Z∗) dZ∗

Φ
(
ZnZi

)
− Φ(ZnZi −1)

as the expected marginal impact conditional on a father from social class nZi . The average

marginal effect is then given as

γOP =
∑

i

wiγnZi /
∑

i

wi

where nZi is the social class of observation i.
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